

Caged Ball LM Guide

Ultra-Heavy Load, High Rigidity Type Improved Dust Control Performance Optimized for Machine Tools

For details, visit THK at www.thk.com

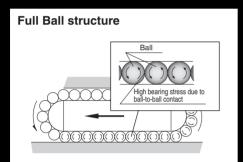
 $\ensuremath{\ast}\xspace \text{Product}$ information is updated regularly on the THK website.

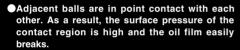
Caged Ball LM Guide

Mechanical motion of a machine is made up of two motions; Rotational motion and Linear motion. And these motions of machine has

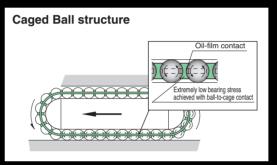
Mechanical motion of a machine is made up of two motions; Rotational motion and Linear motion. And these motions of machine has evolved from "sliding" to "rolling."

"Rolling" in the rotational motion was realized with the advent of the ball bearing more than 100 years ago.


Since then, the ball bearing has evolved from a full-ball type in the early years into a caged-ball type, which enables the balls to be evenly aligned without being in contact with each other, resulting in drastic improvement of the performance.

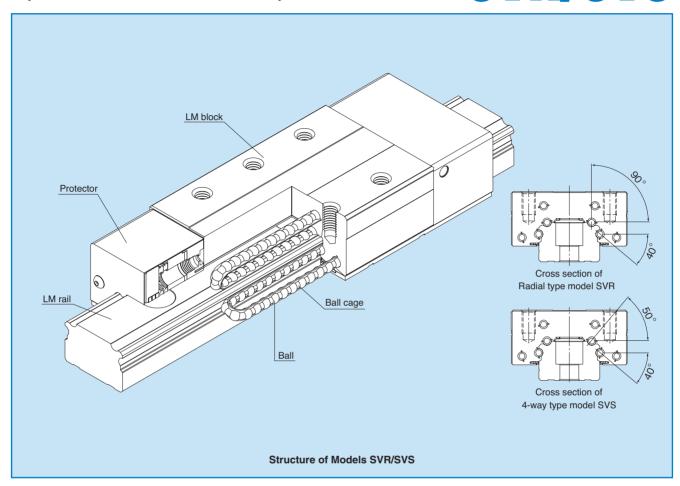

Concerning the linear motion, "LM Guide," a linear motion guide that THK developed and commercialized in 1972, was adopted in industrial equipment and various other machinery as an innovative product that realizes "rolling."

Since "LM Guide" evolved from a full-ball type into "Caged-Ball LM Guide" in 1996, its performance has also drastically been improved and the areas of its application has been broadened to various industrial fields.


Feature of the Caged Ball LM Guide

- Long Service Life and Long-term Maintenance-free Operation
- Superbly High Speed
- Low Noise, Acceptable Running Sound
- **Smooth Motion**
- **Low Dust Generation**

- OWear occurs due to friction between adjacent
- Ocollision noise is produced due to contact between adjacent balls.
- Othe service life is short for the above reasons.



Since the friction between adjacent balls is eliminated,

- The oil film does not easily break.
- Friction wear is reduced.
- Heat generation during high-speed operation is
- Degradation of the lubricant is suppressed.
- Collision noise is suppressed.
- Balls move smoothly because they are evenly aligned.
- ●Lubrication condition is improved by the ball cage.
- The service life is longer for the above reasons.

Ultra-Heavy Load, High Rigidity Type Improved Dust Control Performance, Optimized for Machine Tools

Models SVR/SVS have higher rigidity and load-bearing capacity than other models in the Caged-Ball LM Guide series. In addition, they maintain the performance of LM Guide and achieve high reliability by enhancing the dust-control performance with a wide range of options that take into account the service environments of machine tools and other machinery.

- *1: They are interchangeable with models SNR/SNS in mounting dimensions.
- *2: Since models SVR/SVS have very high rigidity, their structures are susceptible to a misalignment of the mounting surface and mounting error. The impact of such factors may shorten the service life or impair the movement. If you consider selecting these models, contact THK.

Ultra-heavy load, increased damping effect

The raceway of models SVR/SVS adopts a circular-arc deep groove with a curvature approximate to the ball diameter. This enables the ball contact area to increase in response to the increase in the applied load, achieves a large load carrying capacity and increases the damping effect.

High rigidity

Models SVR/SVS are the most rigid types among the Caged Ball LM Guide series.

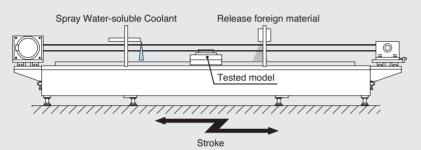
Both the radial type SVR and the 4-way type SVS are available for each size variation. Depending on the intended use, you can select either type.

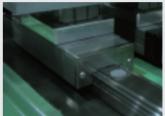
Improved dust-control performance

The foreign material removal function has been enhanced to improve the dust-control performance through the introduction of a newly developed protector. In addition, these models adopt the side scraper to reduce entrance of foreign material into the LM block and maintain the LM Guide performance for a long period even in adverse environments.

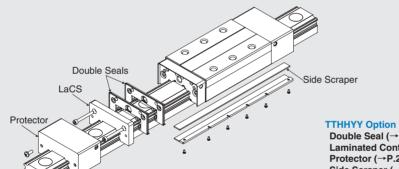
Wide array of options

Various options are available, including end seal, inner seal, side seal, Laminated Contact Scraper LaCS, protector, side scraper and GC-cap, to respond to diversified applications.

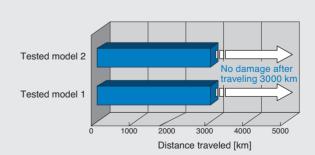

Models SVR/SVS Contamination Protection Performance Evaluation


Models SVR/SVS maintain their performance under severe condition with fine particle or liquid contamination.

Test conditions


Item		Description		
Tested model		SVS45LR1TTHHYYC1+2880LP×2set		
Maximum speed		200m/min		
Stroke		2500mm		
Grease used		THK AFB-LF Grease		
	Foreign material	Type: Metal powder Particle diameter: 125 μ m or less (Atomized Powder)		
Environmental conditions		Amount: 0.4g/20min		
CONGILIONS	Coolant	Water-soluble Coolant		
	Coolant	Amount: 0.2cc/10s		

Models SVR/SVS with option (TTHHYY option)



Double Seal (→P.25~26)
Laminated Contact Scraper LaCS (→P.25~26)
Protector (→P.29)
Side Scraper (→P.27)

Test Result

After traveling 3000 km

Models SVR/SVS maintain their performance even after traveling 3000 km under severe conditions with exposure to coolant and contamination.

Models SVR/SVS Rigidity Evaluation Data

Rigidity of Models SVR/SVS is equal to or higher than conventional 4 Way Equal Load LM guide.

[Rigidity Data] Rigidity in 4 directions (Radial, Reverse radial, Horizontal) is shown below. Radial rigidity SVS 45L (preload: C0) 70 -SNS 45L (preload: C0) 60 Deflection [µm] 50 40 30 20 10 50 60 Applied load F [kN] Radial rigidity Reverse radial rigidity Load F 80 SVS 45L (preload: C0) 70 SNS 45L (preload: C0) Deflection [µm] 50 40 30 40 50 30 60 Applied load F [kN] Reverse radial rigidity Horizontal rigidity 80 SVS 45L (preload: C0) 70 -SNS 45L (preload: C0) Deflection [µm] 60 50 40 30 20 30 40 50 Applied load F [kN] Horizontal rigidity

SVR/SVS Outline

Models SVR/SVS - Product Overview

Ultra-heavy load, high rigidity, and improved dust control performance Radial type model SVR and 4-way type model SVS are available to select from. Major applications Machining center / NC lathe / grinding machine / penta-plano milling machine

Models SVR-R/SVS-R

The LM block has a smaller width (W) and is equipped with tapped holes.

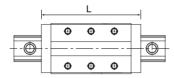
It is suitable for places where space for the table width is limited.

●SVR/SVS 25R

●SVR/SVS 45R

●SVR/SVS 30R ●SVR/SVS 55R

●SVR/SVS 35R ●SVR/SVS 65R

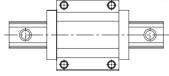

Models SVR-LR/SVS-LR

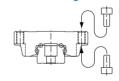
The LM block has the same sectional shape as models SVR-R/SVS-R, but has a longer overall LM block length (L) and a greater rated load.

●SVR/SVS 25LR ●SVR/SVS 45LR

●SVR/SVS 30LR ●SVR/SVS 55LR

●SVR/SVS 35LR ●SVR/SVS 65LR

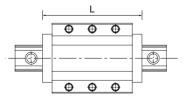

Models SVR-C/SVS-C

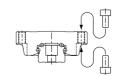

The flange of the LM block has tapped holes. It can be mounted from the top or the It can be used in places where the table ●SVR/SVS 25C ■SVR/SVS 30C SVR/SVS 45C ●SVR/SVS 55C

SVR/SVS 35C

SVR/SVS 65C

cannot have through holes for mounting bolts.

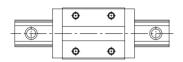


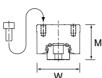

Models SVR-LC/SVS-LC

The LM block has the same sectional shape as models SVR-C/SVS-C, but has a longer overall LM block length (L) and a greater rated load.

●SVR/SVS 25LC ●SVR/SVS 45LC ●SVR/SVS 30LC ●SVR/SVS 55LC

●SVR/SVS 35LC ●SVR/SVS 65LC


SVR/SVS OUTLINE


Models SVR/SVS - Product Overview

Build-to-order Models

Models SVR-RH/SVS-RH

The height (M) and width (W) dimensions are the same as that of LM Guide models SHS and HSR, and the LM block has tapped holes.

●SVR/SVS 35RH

OSVR/SVS 45RH

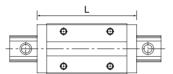
OSVR/SVS 55RH

OSVR/SVS 35LRH

OSVR/SVS 45LRH

OSVR/SVS 55LRH

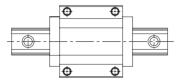
OSVR/SVS 35CH OSVR/SVS 45CH

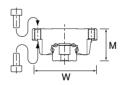

OSVR/SVS 55CH

SVR/SVS 35LCH **OSVR/SVS 45LCH**

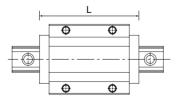
OSVR/SVS 55LCH

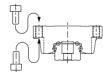
Models SVR-LRH/SVS-LRH


The LM block has the same sectional shape as models SVR-RH/SVS-RH, but has a longer overall LM block length (L) and a greater rated load.



Models SVR-CH/SVS-CH


The height (M) and width (W) dimensions are the same as that of LM Guide models SHS and HSR, and the flange of the LM block has tapped holes.



Models SVR-LCH/SVS-LCH

The LM block has the same sectional shape as models SVR-CH/SVS-CH, but has a longer overall LM block length (L) and a greater rated load.

*1: Dimensional table for models SVR/SVS

Model SVR-R/LR → pages 13 to 14

Model SVS-R/LR → pages 15 to 16

Model SVR-C/LC → pages 17 to 18

Model SVS-C/LC → pages 19 to 20

Model SVR-RH/LRH → pages 21

Model SVS-RH/LRH → pages 21

Model SVR-CH/LCH → pages 22

Model SVS-CH/LCH → pages 22

Rated Loads in All Directions

Models SVR/SVS are capable of receiving loads in all four directions: radial, reverse-radial and lateral directions.

Their basic dynamic load ratings are represented by the symbols in the radial direction indicated in the figure on the right, and the actual values are provided in the dimensional tables*1 for SVR/SVS. The values in the reverse-radial and lateral directions are obtained from the table.

Reverse	-radial direction	Hadiai direct	lion
	C L	С	
	PL CoL	Co ♥ Pr	
Ст			Ст
Сот			Сот
→			←
PT			PT
Lateral direction			Lateral direction

Rated Loads of Models SVR/SVS in All Directions

	Model SVR		
Direction	Basic dynamic load rating	Basic static load rating	
Radial direction	С	C ₀	
Reverse-radial direction	CL=0.64C	C _{0L} =0.64C ₀	
Lateral direction	C⊤=0.47C	Сот=0.38Со	

Discotion		Model SVS		
	Direction	Basic dynamic load rating	Basic static load rating	
	Radial direction	С	C₀	
	Reverse-radial direction	CL=0.84C	C _{0L} =0.84C ₀	
	Lateral direction	C₁=0.92C	Сот=0.85Со	

Equivalent Load

When the LM block of model SVR receives a reverse-radial load and a lateral load simultaneously, the equivalent load is obtained from the equation below.

$P_F = X \cdot P_1 + Y \cdot P_T$

P⊧	:Equivalent load	[N]
	·Reverse-radial direction	
P_{L}	:Reverse-radial load	[N]
P_T	:Lateral load	[N]
X, Y	:Equivalent factor	(see table 1)

Table 1 Equivalent Factor of Model SVR

P₅	X	Υ
Equivalent load in reverse-radial direction	1	1.678

When the LM block of model SVS receives a radial load and a lateral load, or a reverse-radial load and a lateral load, simultaneously, the equivalent load is obtained from the equation below.

$P_E = X \cdot P_R (P_L) + Y \cdot P_T$

: Equivalent load [N] ·Radial direction ·Reverse-radial direction :Radial load [N] : Reverse-radial load Pι [N] :Lateral load [N] X, Y : Equivalent factor (see tables 2 and 3)

Table 2 Equivalent Factor of Model SVS (When radial load and lateral load are applied)

PE	Х	Υ
Equivalent load in radial direction	1	0.935

Table 3 Equivalent Factor of Model SVS (When reverse-radial load and lateral load are applied)

·		
PE	Х	Υ
Equivalent load in reverse-radial direction	1	1.02

Service life

The service life of an LM Guide is subject to variations even under the same operational conditions. Therefore, it is necessary to use the rated life defined below as a reference value for obtaining the service life of the LM Guide.

Rated life

The rated life means the total travel distance that 90% of a group of units of the same LM Guide model can achieve without flaking (scale-like exfoliation on the metal surface) after individually running under the same conditions.

Service life time

Once the rated life (L) has been obtained, the service life time can be obtained using the equation on the right if the stroke length and the number of reciprocations are constant.

$L = \left(\frac{f_{H} \cdot f_{T} \cdot f_{c}}{f_{W}} \cdot \frac{C}{P_{c}}\right)^{3} \times 50$

: Rated life [km

C : Basic dynamic load rating*1 [N]
Pc : Calculated load [N]

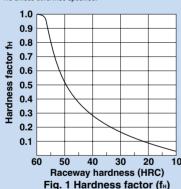
f_H : Hardness factor (see Fig. 1)

f_T: Temperature factor

f_c : Contact factor (see Table 1) f_w : Load factor (see Table 2)

$$L_h = \frac{L \times 10^6}{2 \times \theta \times p_1 \times 60}$$

 $\begin{array}{lll} L_{^h} & : Service \ life \ time & & [h] \\ \ell_{^s} & : Stroke \ length & & [mm] \end{array}$


n₁: No. of reciprocations per min [min⁻¹]

■f_H: Hardness factor

To ensure the achievement of the optimum load capacity of the LM Guide, the raceway hardness must be between 58 and 64 HRC.

At hardness below this range, the basic dynamic and static load ratings decrease. Therefore, the rating values must be multiplied by the respective hardness factors (fi-).

Since the LM Guide has sufficient hardness, the fn value for the LM Guide is normally 1.0 unless otherwise specified.

f_c: Contact factor

When multiple LM blocks are used in close contact with each other, it is difficult to achieve uniform load distribution due to moment loads and mounting-surface accuracy. When using multiple blocks in close contact with each other, multiply the basic load rating (C or $C_{\rm e}$) by the corresponding contact factor indicated in Table 1.

Note: When uneven load distribution is expected in a large machine, consider using a conta factor from Table 1.

Table 1 Contact Factor (fc)

Number of blocks used in close contact	Contact factor fc	
2	0.81	
3	0.72	
4	0.66	
5	0.61	
6 or more	0.6	
Normal use	1	

f_T : Temperature factor

Since the service temperature of Caged Ball LM Guides is normally 80°C or below, the $f_{\rm T}$ value is 1.0.

fw: Load factor

In general, reciprocating machines tend to produce vibrations or impact during operation. It is especially difficult to accurately determine all vibrations generated during high-speed operation and impacts produced each time the machine starts and stops. Therefore, where the effects of speed and vibration are estimated to be significant, divide the basic dynamic load rating (C) by a load factor selected from Table 2, which contains empirically obtained data.

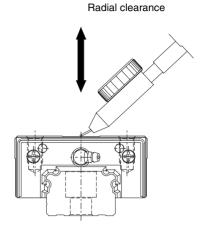
Table 2 Load Factor (fw)

Vibration/impact	Speed (V)	fw
Faint	Very slow V≦0.25m/s	1 to 1.2
Weak	Slow 0.25 <v≦1m s<="" td=""><td>1.2 to 1.5</td></v≦1m>	1.2 to 1.5
Moderate	Medium 1 <v≦2m s<="" td=""><td>1.5 to 2</td></v≦2m>	1.5 to 2
Strong	Fast V>2m/s	2 to 3.5

*1: Basic dynamic load rating (C) It refers to a load with a

It refers to a load with a constant magnitude and direction under which the rated life (L) of a group of identical LM Guide units independently operating is 50 km

*1: Preload


Preload is an internal load applied to the rolling elements (balls, rollers, etc.) of an LM block in advance in order to increase its rigidity. The clearance of all model SVR/SVS units is adjusted to the designated value before being shipped. Therefore, it is unnecessary to adjust the preload.

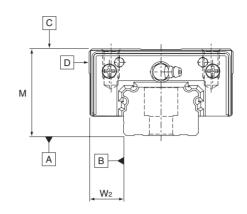
Radial Clearance Standard

Since the radial clearance of an LM Guide greatly affects the running accuracy, load carrying capacity and rigidity of the LM Guide, it is important to select an appropriate clearance according to the application.

In general, selecting a negative clearance (i.e., a preload*1 is applied) while taking into account possible vibrations and impact generated from reciprocating motion favorably affects the service life and the accuracy.

Unit: μ m

Indication symbol	Normal	Light preload	Moderate preload
Model No.	No symbol	C1	C0
25	- 3 to +2	- 6 to - 3	- 9 to - 6
30	- 4 to +2	- 8 to - 4	-12 to - 8
35	- 4 to +2	- 8 to - 4	-12 to - 8
45	- 5 to +3	–10 to – 5	−15 to −10
55	- 6 to +3	–11 to – 6	−16 to −11
65	- 8 to +3	-14 to - 8	–20 to −14


Models SVR/SVS - Product Overview

Accuracy Standard

The accuracy of model SVR/SVS is specified in terms of running parallelism (1), dimensional tolerance for height and width, and height and width difference between a pair (12,13) when two or more LM blocks are used on one rail or when two or more rails are mounted on the same plane.

The accuracy of model SVR/SVS is categorized into Normal grade (no symbol), High-accuracy grade (H), Precision grade (P), Super precision grade (SP) and Ultra precision grade (UP) by model numbers, as indicated in the table below.

Unit: mm

Model No.	Accuracy standard	Normal grade	High-accuracy grade	Precision grade	Super precision grade	Ultra precision grade	
woder No.	Item	No Symbol	Н	Р	SP	UP	
	Dimensional tolerance for height M	±0.08	±0.04	- 0.04	- 0.02	- 0.01	
	Difference in height M	0.02	0.015	0.007	0.005	0.003	
25	Dimensional tolerance for width W ₂	±0.07	±0.03	0 - 0.03	0 - 0.015	- 0.01	
30	Difference in width W ₂	0.025	0.015	0.007	0.005	0.003	
35	Running parallelism of surface C against surface A		as shown in the table below				
	Running parallelism of surface D against surface B		as sho	own in the table	below		
	Dimensional tolerance for height M	±0.08	±0.04	0 - 0.05	0 - 0.03	0 - 0.015	
	Difference in height M	0.025	0.015	0.007	0.005	0.003	
	Dimensional tolerance for width W ₂	±0.07	±0.04	0 - 0.04	0 - 0.025	- 0.015	
45	Difference in width W ₂	0.03	0.015	0.007	0.005	0.003	
55	Running parallelism of surface C against surface A	as shown in the table below					
	Running parallelism of surface D against surface B	as shown in the table below					
	Dimensional tolerance for height M	±0.08	±0.04	0 - 0.05	0 - 0.04	- 0.03	
	Difference in height M	0.03	0.02	0.01	0.007	0.005	
	Dimensional tolerance for width W ₂	±0.08	±0.04	0 - 0.05	0 - 0.04	- 0.03	
65	Difference in width W ₂	0.03	0.02	0.01	0.007	0.005	
65	Running parallelism of surface C against surface A	as shown in the table below					
	Running parallelism of surface D against surface B	as shown in the table below					

LM Rail Length and Running Parallelism for Models SVR/SVS

U	nit:	μ	m

LM rail le	ngth (mm)	Running Parallelism Values											
Above	Or less	Normal grade	High-accuracy grade	Precision grade	Super precision grade	Ultra precision grade							
Above	Officss	No Symbol	Н	Р	SP	UP							
_	50	5	3	2	1.5	1							
50	80	5	3	2	1.5	1							
80	125	5	3	2	1.5	1							
125	200	5	3.5	2	1.5	1							
200	250	6	4	2.5	1.5	1							
250	315	7	4.5	3	1.5	1							
315	400	8	5	3.5	2	1.5							
400	500	9	6	4.5	2.5	1.5							
500	630	11	7	5	3	2							
630	800	12	8.5	6	3.5	2							
800	1000	13	9	6.5	4	2.5							
1000	1250	15	11	7.5	4.5	3							
1250	1600	16	12	8	5	4							
1600	2000	18	13	8.5	5.5	4.5							
2000	2500	20	14	9.5	6	5							
2500	3090	21	16	11	6.5	5.5							

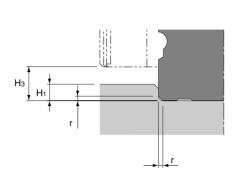
*1: Running parallelism

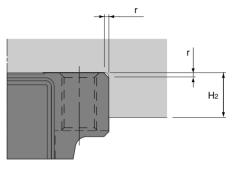
It refers to the parallelism error between the LM block and the LM rail datum plane when the LM block travels the whole length of the LM rail with the LM rail secured on the reference datum plane using bolts.

*2: Difference in height M

It indicates the difference between the minimum and maximum values of height (M) of each of the LM blocks used on the same plane in combination.

*3: Difference in width W2


It indicates the difference between the minimum and maximum values of the width (W₂) between each of the LM blocks, mounted on one LM rail in combination, and the LM rail.



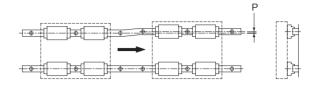
Shoulder Height of the Mounting Base and the Corner Radius

Normally, the mounting base for the LM rail and the LM block has a datum plane on the side face of the shoulder of the base in order to allow easy installation and highly accurate positioning.

The corner of the mounting shoulder must be machined to have a recess, or machined to be smaller than the corner radius "r," to prevent interference with the chamfer of the LM rail or the LM block.

Shoulder for the LM rail

Shoulder for the LM block


Unit: mm

Model No.	Corner radius r (max)	Shoulder height for the LM rail H ₁	Shoulder height for the LM block H ₂	Н₃
25	0.5	4	5	5.5
30	1	5	5	7
35	1	6	6	9
45	1	8	8	11.6
55	1.5	10	10	14
65	1.5	10	10	15

Error Allowance in the Parallelism Between Two Rails

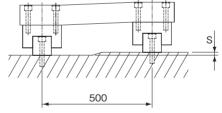
The following table shows error allowances in parallelism (P) between two rails that will not affect the service life in normal operation.

Model SVR

Unit: μ m

Model No.	Clearance C0	Clearance C1	Normal clearance
25	14	15	21
30	19	21	28
35	21	25	35
45	25	28	42
55	32	35	49
65	39	42	56

Model SVS

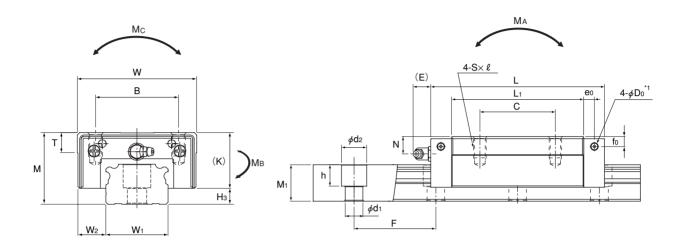

Unit: µm

			Oint. Ain
Model No.	Clearance C0	Clearance C1	Normal clearance
25	10	11	15
30	14	15	20
35	15	18	25
45	18	20	30
55	23	25	35
65	28	30	40

Error Allowance in Vertical Level Between Two Rails

The values in the tables indicate the error allowances in vertical level (S) between two rails per 500 mm of the axis-to-axis distance, and are proportional to the axis-to-axis distances.

Model SVR


			Unit: μ m
Model No.	Clearance C0	Clearance C1	Normal clearance
25	35	43	65
30	45	55	85
35	60	75	105
45	70	85	125
55	85	105	150
65	100	125	175

Model SVS

model eve			Unit: μ m
Model No.	Clearance C0	Clearance C1	Normal clearance
25	49	60	91
30	63	77	119
35	84	105	147
45	98	119	175
55	119	147	210
65	140	175	245

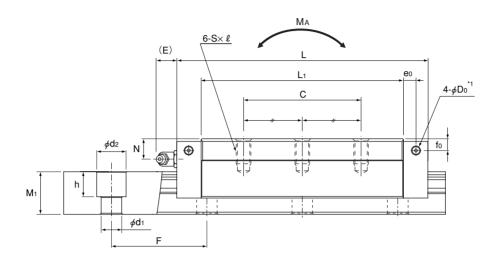
Models SVR-R/SVR-LR

Dimensional Table for Models SVR-R/SVR-LR

Model SVR-R/LR Model SVR-R

	Oute	r dimen	sions					LM	block d	imensi	ons					
Model No.	Height M	Width W	Length L	В	С	S× ℓ	L ₁	Т	К	N	f o	E	e _o	Do	Grease nipple	H₃
SVR 25R SVR 25LR	31	50	82.8 102	32	35 50	M6×8	61.4 80.6	9.7	25.5	7.8	5.1	12	4.5	3.9	B-M6F	5.5
SVR 30R SVR 30LR	38	60	98 120.5	40	40 60	M8×10	72.1 94.6	9.7	31	10.3	7	12	6.5	3.9	B-M6F	7
SVR 35R SVR 35LR	44	70	109.5 135	50	50 72	M8×12	79 104.5	11.7	35	12.1	8	12	6	5.2	B-M6F	9
SVR 45R SVR 45LR	52	86	138.2 171	60	60 80	M10×17	105 137.8	14.7	40.4	13.9	8	16	8.5	5.2	B-PT1/8	11.6
SVR 55R SVR 55LR	63	100	163.3 200.5	65	75 95	M12×18	123.6 160.8	17.7	49	16.6	10	16	10	5.2	B-PT1/8	14
SVR 65R SVR 65LR	75	126	186 246	76	70 110	I M16×20 I	143.6 203.6	21.6	60	19	15	16	8.7	8.2	B-PT1/8	15

■ Example of model number coding



- 1 Model number 2 Type of LM block 3 No. of LM blocks used on the same rail 4 With QZ Lubricator
- 5 Dust prevention accessory symbol (see page 25) 6 Radial clearance symbol (see page 7)
- LM rail length (in mm) 3Accuracy symbol (see page 8) Symbol for LM rail jointed use 10No. of rails used on the same plane

Note This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

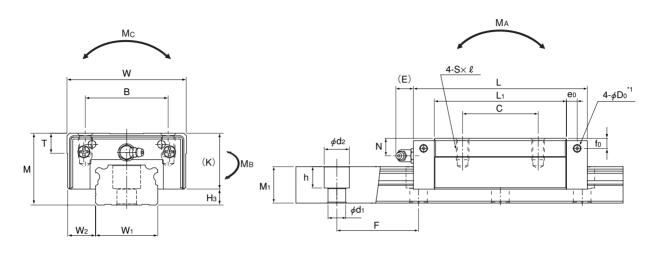
Those models equipped with QZ Lubricator cannot have a grease nipple.

Model SVR-LR

Unit: mm

		LM ra	ail dime	nsions		Basic loa	ad rating	Stati	c permi	ssible m	oment k	N-m*3	Mass	
Width W ₁		Height	Pitch	d₁×d₂×h	Length Max*2	С	C ₀	N	la 🔒	M	⊫	Mc 🕝	LM block	LM rail
0 -0.05	W_2	M ₁	F			[kN]	[kN]	1 block	Double blocks	1 block	Double blocks	1 block	[kg]	[kg/m]
25	12.5	17	40	6v0 Ev0 E	2500	48	68	0.569	2.95	0.391	2.61	0.720	0.4	2.9
25	12.5	''	40	6×9.5×8.5 2500		57	86	0.890	4.74	0.612	4.21	0.912	0.5	2.9
28	16	21	80	754150	3000	68	99	0.859	5.07	0.588	4.29	1.09	0.7	4.2
20	10	21	80	7×11×9	3000	81	126	1.52	7.78	1.04	6.61	1.48	0.9	4.2
34	18	24.5	80	9×14×12	3000	90	115	1.19	7.19	0.812	6.17	1.65	1	6.0
34	10	24.5	80	9×14×12	3000	108	159	2.21	11.1	1.50	9.63	2.28	1.3	6.0
45	20.5	29	105	14×20×17	3090	132	173	2.61	13.0	1.80	11.8	3.51	1.8	9.5
45	20.5	29	105	14×20×17	3090	161	231	3.98	20.8	2.75	18.8	4.39	2.3	9.5
53	23.5	36.5	120	16×23×20	3060	177	238	3.78	20.5	2.59	18.6	5.13	3.3	14
53	23.5	30.5	120	10×23×20	3000	214	312	6.35	30.8	4.35	28.0	6.73	4.3	14
63	31.5	43	150	18×26×22	3000	260	328	6.18	33.7	4.11	28.3	8.47	6.0	19.6
03	31.3	43	150	10×20×22	3000	340	481	12.8	60.2	8.52	50.7	12.4	8.5	13.0

block: Static permissible moment value with 1 LM block
 Double blocks: Static permissible moment value with 2 blocks closely contacting with each


^{*1} Pilot holes for side nipples are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than mounting a grease nipple.

^{*2} The maximum length under "Length" indicates the standard maximum length of an LM rail.

^{*3} Static permissible moment:

Models SVS-R/SVS-LR

Dimensional Table for Models SVS-R/SVS-LR

Model SVS-R/LR Model SVS-R

	Outer	r dimen	isions					LM	block d	imensi	ons					
Model No.	Height M	Width W	Length L	В	С	S× ℓ	L ₁	Т	К	N	f o	Е	e ₀	Do	Grease nipple	H₃
SVS 25R SVS 25LR	31	50	82.8 102	32	35 50	M6×8	61.4 80.6	971	25.5	7.8	5.1	12	4.5	3.9	B-M6F	5.5
SVS 30R SVS 30LR	38	60	98 120.5	40	40 60	M8×10	72.1 94.6	9.7	31	10.3	7	12	6.5	3.9	B-M6F	7
SVS 35R SVS 35LR	44	70	109.5 135	50	50 72	M8×12	79 104.5	11.7	35	12.1	8	12	6	5.2	B-M6F	9
SVS 45R SVS 45LR	52	86	138.2 171	60	60 80	M10×17	105 137.8	14.7	40.4	13.9	8	16	8.5	5.2	B-PT1/8	11.6
SVS 55R SVS 55LR	63	100	163.3 200.5	l 65 l	75 95	M12×18	123.6 160.8	1 77	49	16.6	10	16	10	5.2	B-PT1/8	14
SVS 65R SVS 65LR	75	126	186 246	76	70 110	□ M16×20 □	143.6 203.6	⊥21.6 I	60	19	15	16	8.7	8.2	B-PT1/8	15

Example of model number coding

- 1 Model number 2 Type of LM block 3 No. of LM blocks used on the same rail 4 With QZ Lubricator
- 5 Dust prevention accessory symbol (see page 25) 6 Radial clearance symbol (see page 7)
- ☑LM rail length (in mm) ③Accuracy symbol (see page 8) ②Symbol for LM rail jointed use ⑩No. of rails used on the same plane

Note This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

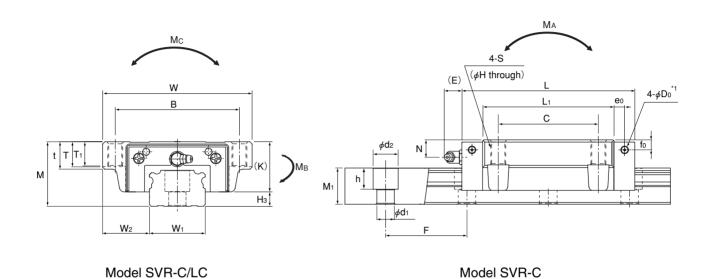
Those models equipped with QZ Lubricator cannot have a grease nipple.

Model SVS-LR

Unit: mm

		LM ra	ail dime	nsions		Basic loa	ad rating	Statio	permis	sible mo	ment [k	(N-m]*3	Mass	
Width W₁		Height	Pitch	d₁×d₂×h	Length Max*2	С	C ₀	N	la 🔒	M	В	Mc 🕞	LM block	LM rail
0 -0.05	W_2	M ₁	F	UIAUZAII	IVIAX -	[kN]	[kN]	1 block	Double blocks	1 block	Double blocks	1 block	[kg]	[kg/m]
25	12.5	17	40	6×9.5×8.5	2500	37	52	0.534	2.77	0.578	2.33	0.639	0.4	2.9
25	12.5	17	40	0.5.5.0.5	9.5×8.5 2500		66	0.837	4.44	0.908	3.75	0.810	0.5	2.3
28	16	21	80	701100	2000	52	76	0.807	4.74	0.868	4.01	0.969	0.7	4.2
20	10	21	80	7×11×9	3000	62	96	1.43	7.28	1.55	6.17	1.31	0.9	4.2
34	18	04.5	80	9×14×12	3000	69	88	1.11	6.78	1.20	5.64	1.47	1	6.0
34	18	24.5	80	9×14×12	3000	83	122	2.05	10.5	2.22	8.79	2.03	1.3	0.0
45	00.5	29	105	14×20×17	3090	101	133	2.45	12.3	2.67	10.3	3.15	1.8	9.5
45	20.5	29	105	14×20×17	3090	123	177	3.74	19.6	4.08	16.5	3.94	2.3	9.5
	00.5	00.5	100	16,00,00	2060	136	182	3.55	19.2	3.85	16.3	4.56	3.3	1.4
53	23.5	36.5	120	16×23×20	3060	164	239	5.95	28.8	6.49	24.5	5.99	4.3	14
60	21.5	40	150	18×26×22	3000	199	251	5.79	31.6	6.05	27.2	7.52	6.0	10.6
63	31.5	43	150	10×20×22	3000	261	368	12.0	56.4	12.5	48.8	11.0	8.5	19.6

*1 Pilot holes for side nipples are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than mounting a grease nipple.


Double blocks: Static permissible moment value with 1 LM block

Double blocks: Static permissible moment value with 2 blocks closely contacting with each other

^{*2} The maximum length under "Length" indicates the standard maximum length of an LM rail.
*3 Static permissible moment: 1 block: Static permissible moment value with 1 LM block

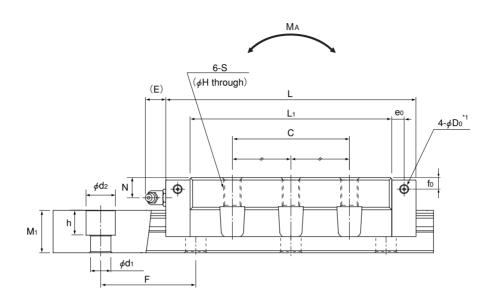
Models SVR-C/SVR-LC

Dimensional Table for Models SVR-C/SVR-LC

	Outer	r dime	ensions							LM blo	ock di	mensi	ons						
Model No.	_		Length															Grease	
	М	W	L	B	C	S	H	L ₁	t	T	Τı	K	N	f o	E	e ₀	D₀	nipple	Н₃
SVR 25C	31	72	82.8	59	45	M8	6.8	61.4	16	14.8	12	25.5	7.8	5.1	12	4.5	3.9	B-M6F	5.5
SVR 25LC	31	12	102	59	45	IVIO	0.6	80.6	10	14.0	12	25.5	7.0	5.1	12	4.5	3.9	D-IVIOF	5.5
SVR 30C	38	90	98	72	52	M10	8.5	72.1	18.1	16.9	14	31	10.3	7	12	6.5	3.9	B-M6F	7
SVR 30LC	30	90	120.5	12	52	IVITO	0.5	94.6	10.1	10.9	14	31	10.5		12	0.5	3.9	D-IVIOI	,
SVR 35C	44	100	109.5	82	62	M10	8.5	79	20.1	18.9	16	35	12.1	8	12	6	5.2	B-M6F	9
SVR 35LC	4	100	135			IVITO	0.5	104.5	20.1	10.9	10	35	12.1		12		اء.ح	D-IVIOI	
SVR 45C	52	120	138.2	100	80	M12	10.5	105	22.1	20.6	20	40.4	13.9	8	16	8.5	5.2	B-PT1/8	11.6
SVR 45LC	ا ا	120	171	100	00	IVIIZ	10.5	137.8	22.1	20.0	20	40.4	13.9		10	0.5	J.Z	D-F 1 1/0	11.0
SVR 55C	63	140	163.3	116	95	M14	12.5	123.6	24	22.5	22	49	16.6	10	16	10	5.2	B-PT1/8	14
SVR 55LC	03	140	200.5	110	95	IVI I 4	12.5	160.8	24	22.5	22	49	10.0	10	10	10	5.2	D-F 1 1/6	1 4
SVR 65C	75	170	186	142	110	M16	14.5	143.6	28	26	25	60	19	15	16	8.7	8.2	B-PT1/8	15
SVR 65LC	75	170	246	142	110	IVITO	14.5	203.6	20	20	25	60	19	15	10	0.7	0.2	D-P I I/O	15

Example of model number	SVR45 LC 2 QZ T
coding	1 2 3 4

SVR45 LC 2 QZ TTHH C0 +1200L P T - II


■ Model number 2 Type of LM block 3 No. of LM blocks used on the same rail 4 With QZ Lubricator

5 Dust prevention accessory symbol (see page 25) 6 Radial clearance symbol (see page 7)

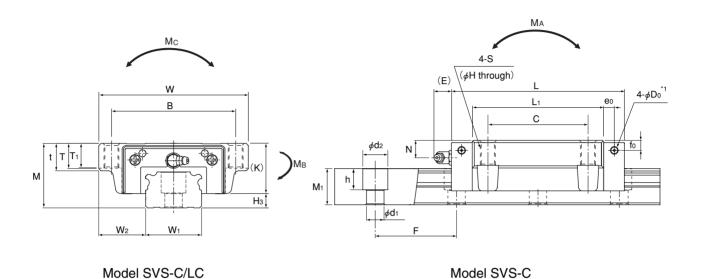
LM rail length (in mm) 3Accuracy symbol (see page 8) Symbol for LM rail jointed use 10No. of rails used on the same plane

Note This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

Those models equipped with QZ Lubricator cannot have a grease nipple.

Model SVR-LC

Unit: mm

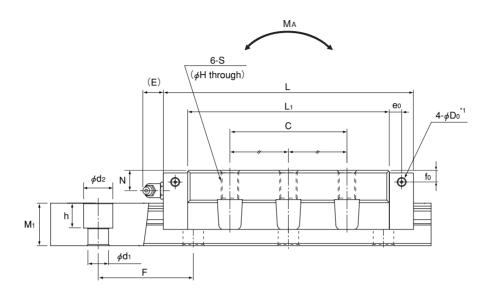

		LM ra	ail dime	nsions		Basic loa	ad rating	Statio	permis	sible mo	ment [k	(N-m]*3	Ма	ss
Width W₁		Height	Pitch	d₁×d₂×h	Length Max*2	С	C ₀	N	la 🔒	M	le 🔒	Mc 🕞	LM block	LM rail
0 -0.05	W ₂	M ₁	F	u i Auz Aii	IVIAX -	[kN]	[kN]	1 block	Double blocks	1 block	Double blocks	1 block	[kg]	[kg/m]
25	23.5	17	40	6×9.5×8.5	2500	48	68	0.569	2.95	0.391	2.61	0.720	0.6	2.9
25	23.5	17	40	6×9.5×6.5	2500	57	86	0.890	4.74	0.612	4.21	0.912	0.8	2.9
28	21	01	80	701100	2000	68	99	0.859	5.07	0.588	4.29	1.09	1.1	4.2
28	31	21	80	7×11×9	′×11×9 3000	81	126	1.52	7.78	1.04	6.61	1.48	1.5	4.2
34	33	24.5	80	9×14×12	3000	90	115	1.19	7.19	0.812	6.17	1.65	1.6	6.0
34	33	24.5	80	9×14×12	3000	108	159	2.21	11.1	1.50	9.63	2.28	2	6.0
45	37.5	00	105	14×20×17	3090	132	173	2.61	13.0	1.80	11.8	3.51	2.7	0.5
45	37.5	29	105	14×20×17	3090	161	231	3.98	20.8	2.75	18.8	4.39	3.6	9.5
53	43.5	36.5	120	16,00,00	3060	177	238	3.78	20.5	2.59	18.6	5.13	4.5	1.4
53	43.5	30.5	120	16×23×20	3060	214	312	6.35	30.8	4.35	28.0	6.73	5.9	14
63	53.5	43	150	18×26×22	3000	260	328	6.18	33.7	4.11	28.3	8.47	7.8	10.0
03	ეე.ე	43	150	10XZ0XZZ	3000	340	481	12.8	60.2	8.52	50.7	12.4	11.0	19.6

*1 Pilot holes for side nipples are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than Note mounting a grease nipple.
*2 The maximum length under "Length" indicates the standard maximum length of an LM rail.

^{*3} Static permissible moment: 1 block: Static permissible moment value with 1 LM block Double blocks: Static permissible moment value with 2 blocks closely contacting with each

Models SVS-C/SVS-LC

Dimensional Table for Models SVS-C/SVS-LC


	Oute	r dime	ensions							LM blo	ock di	mensi	ons						
Model No.	Height M	Width W	Length	В	С	S	Н	L ₁	t	Т	T 1	К	N	fo	Е	e ₀	D ₀	Grease nipple	H₃
SVS 25C SVS 25LC	31	72	82.8 102	59	45	M8	6.8	61.4 80.6	16	14.8	12	25.5	7.8	5.1	12	4.5	3.9	B-M6F	5.5
SVS 30C SVS 30LC	38	90	98 120.5	72	52	M10	8.5	72.1 94.6	18.1	16.9	14	31	10.3	7	12	6.5	3.9	B-M6F	7
SVS 35C SVS 35LC	44	100	109.5 135	82	62	M10	8.5	79 104.5	20.1	18.9	16	35	12.1	8	12	6	5.2	B-M6F	9
SVS 45C SVS 45LC	52	120	138.2 171	100	80	M12	10.5	105 137.8	22.1	20.6	20	40.4	13.9	8	16	8.5	5.2	B-PT1/8	11.6
SVS 55C SVS 55LC	63	140	163.3 200.5	1116	95	M14	12.5	160.8	24	22.5	22	49	16.6	10	16	10	5.2	B-PT1/8	14
SVS 65C SVS 65LC	75	170	186 246	142	110	M16	14.5	143.6 203.6	28	26	25	60	19	15	16	8.7	8.2	B-PT1/8	15

■ Example of model number	SVS45	LC	2	QZ	ттнн	C0 +	1200	LPT	- Ⅱ
coding	1	2	3	4	5	6	7	8 9	10
Model number 2 Type of LM block 3 No. of LM block 5 Dust prevention accessory symbol (see page 25) 6 R LM rail length (in mm) 8 Accuracy symbol (see page	adial clearance	symbo	ol (se	e page	7)		on the san	ne plane	
Note This model number indicates that an LM b	lock and an LN	M rail	cons	titute o	ne set (i.e	., the req	uired num	nber of set	s when

This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

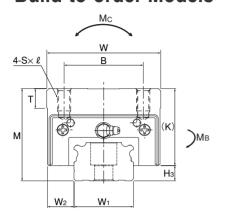
Those models equipped with QZ Lubricator cannot have a grease nipple.

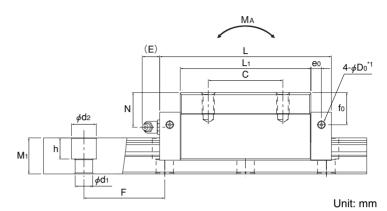
Model SVS-LC

Unit: mm

		LM ra	ail dime	nsions		Basic loa	ad rating	Statio	permis	sible mo	ment [k	(N-m]*3	Ма	SS
Width W ₁		Height	Pitch	d₁×d₂×h	Length Max*2	С	Co	N	14 🔒	M	le 🔒	Mc 🕝	LM block	LM rail
0 -0.05	W_2	M ₁	F	an all	IVIAX	[kN]	[kN]	1 block	Double blocks	1 block	Double blocks	1 block	[kg]	[kg/m]
25	23.5	17	40	6×9.5×8.5	2500	37	52	0.534	2.77	0.578	2.33	0.639	0.6	2.9
25	23.3	17	40	0x9.5x6.5	2300	44	66	0.837	4.44	0.908	3.75	0.810	0.8	2.9
28	31	21	80	751150	2000	52	76	0.807	4.74	0.868	4.01	0.969	1.1	4.2
28	31	21	80	7×11×9 3000	62	96	1.43	7.28	1.55	6.17	1.31	1.5	4.2	
34	33	24.5	80	9×14×12	3000	69	88	1.11	6.78	1.20	5.64	1.47	1.5	6.0
34	33	24.5	80	9×14×12	3000	83	122	2.05	10.5	2.22	8.79	2.03	2	0.0
45	37.5	00	105	14×20×17	3090	101	133	2.45	12.3	2.67	10.3	3.15	2.7	0.5
45	37.5	29	105	14×20×17	3090	123	177	3.74	19.6	4.08	16.5	3.94	3.6	9.5
53	40 E	26.5	100	16,400,400	2060	136	182	3.55	19.2	3.85	16.3	4.56	4.5	14
53	43.5	36.5	120	16×23×20	3060	164	239	5.95	28.8	6.49	24.5	5.99	5.9	14
63	53.5	43	150	18×26×22	3000	199	251	5.79	31.6	6.05	27.2	7.52	7.8	19.6
03	55.5	43	150	10XZ0XZZ	3000	261	368	12.0	56.4	12.5	48.8	11.0	11.0	19.0

*1 Pilot holes for side nipples are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than Note mounting a grease nipple.


^{*2} The maximum length under "Length" indicates the standard maximum length of an LM rail.


*3 Static permissible moment:

1 block: Static permissible moment value with 1 LM block
Double blocks: Static permissible moment value with 2 blocks closely contacting with each other

Models SVR-RH/SVR-LRH SVS-RH/SVS-LRH

Dimensional Table for Models SVR-RH/SVR-LRH SVS-RH/SVS-LRH **Build-to-order Models**

	Oute	r dimen	sions					LM	block c	limensi	ons					
Model No.	Height M	Width W	Length L	В	С	S× ℓ	L ₁	Т	K	N	fo	E	e₀	Do	Grease nipple	Нз
SVR 35RH SVS 35RH	55	70	109.5	50	50	M8×12	79	11.7	46	23.1	19	12	6	5.2	B-M6F	9
SVR 35LRH SVS 35LRH	55	70	135	50	72	M8×12	104.5	11.7	46	23.1	19	12	6	5.2	B-M6F	9
SVR 45RH SVS 45RH	70	86	138.2	60	60	M10×17	105	14.7	58.4	31.9	26	16	8.5	5.2	B-PT1/8	11.6
SVR 45LRH SVS 45LRH	70	86	171	60	80	M10×17	137.8	14.7	58.4	31.9	26	16	8.5	5.2	B-PT1/8	11.6
SVR 55RH SVS 55RH	80	100	163.3	75	75	M12×18	123.6	17.7	66	33.6	27	16	10	5.2	B-PT1/8	14
SVR 55LRH SVS 55LRH	80	100	200.5	75	95	M12×18	160.8	17.7	66	33.6	27	16	10	5.2	B-PT1/8	14

		l	_M rail	dimer	sions		Basic loa	ad rating	Statio	permis	sible mo	ment [k	:N-m]*3	Ма	ISS
Model No.	Width W ₁		Height	Pitch	d ₁ ×d ₂ ×h	Length	С	C₀	N	la 🔒	M	в 🖨	Mc 🕝	LM block	LM rail
	0 -0.05	W ₂	M ₁	F	U1XU2XII	Max*2	[kN]	[kN]	1 block	Double blocks	1 block	Double blocks	1 block	[kg]	[kg/m]
SVR 35RH	34	18	24.5	80	9×14×12	3000	90	115	1.19	7.19	0.812	6.17	1.65	1.5	6.0
SVS 35RH	34	10	24.5	80	9×14×12	3000	69	88	1.11	6.78	1.20	5.64	1.47	1.5	0.0
SVR 35LRH	34	40	04.5	80	04 440	3000	108	159	2.21	11.1	1.50	9.63	2.28	2	6.0
SVS 35LRH	34	18	24.5	80	9×14×12	3000	83	122	2.05	10.5	2.22	8.79	2.03		6.0
SVR 45RH	45	00.5	00	405	140017	3090	132	173	2.61	13.0	1.80	11.8	3.51	3.2	9.5
SVS 45RH	45	20.5	29	105	14×20×17	3090	101	133	2.45	12.3	2.67	10.3	3.15	3.2	9.5
SVR 45LRH	45	00.5	00	405	44 00 47	3090	161	231	3.98	20.8	2.75	18.8	4.39	4.1	9.5
SVS 45LRH	45	20.5	29	105	14×20×17	3090	123	177	3.74	19.6	4.08	16.5	3.94	4.1	9.5
SVR 55RH		00.5	00.5	400	10 00 00	2060	177	238	3.78	20.5	2.59	18.6	5.13	4.7	14
SVS 55RH	53	23.5	36.5	120	16×23×20	3060	136	182	3.55	19.2	3.85	16.3	4.56	4.7	14
SVR 55LRH		00.5	00.5	100	40 00 00	2000	214	312	6.35	30.8	4.35	28.0	6.73	6.2	14
SVS 55LRH	53	23.5	36.5	120	16×23×20	3060	164	239	5.95	28.8	6.49	24.5	5.99	0.2	14

Example of model number coding

SVR35	RH	l 2	QΖ	TTHH	C0	+920L	Н	T	- Ⅱ
1	2	3	4	5	6	7	8	9	10

Model number 2 Type of LM block 3 No. of LM blocks used on the same rail 4 With QZ Lubricator

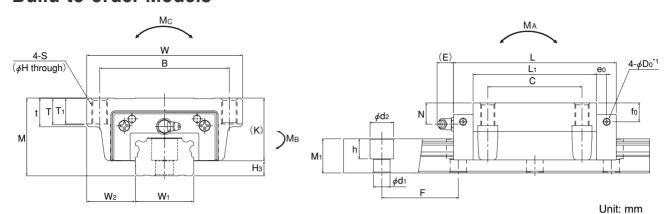
Dust prevention accessory symbol (see page 25) Radial clearance symbol (see page 7)

LM rail length (in mm) 🖪 Accuracy symbol (see page 8) 🗓 Symbol for LM rail jointed use 🔟 No. of rails used on the same plane

Note) This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

Those models equipped with QZ Lubricator cannot have a grease nipple.

Note *1 Pilot holes for side nipples are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than mounting a grease nipple.


^{*2} The maximum length under "Length" indicates the standard maximum length of an LM rail.

^{*3} Static Permissible moment: 1 block: Static permissible moment value with 1 LM block

Double blocks: Static permissible moment value with 2 blocks closely contacting with each other

Models SVR-CH/SVR-LCH SVS-CH/SVS-LCH

Dimensional Table for Models SVR-CH/SVR-LCH SVS-CH/SVS-LCH Build-to-order Models

	Oute	r dime	nsions						ı	LM blo	ck dir	nensio	ns						
Model No.	Height M	Width W	Length L	В	С	S	Н	L ₁	t	Т	T ₁	К	N	f o	Е	e₀	D ₀	Grease nipple	Н₃
SVR 35CH SVS 35CH	48	100	109.5	82	62	M10	8.5	79	20	19	16	39	16.1	12	12	6	5.2	B-M6F	9
SVR 35LCH SVS 35LCH	48	100	135	82	62	M10	8.5	104.5	20	19	16	39	16.1	12	12	6	5.2	B-M6F	9
SVR 45CH SVS 45CH	60	120	138.2	100	80	M12	10.5	105	22	20.5	20	48.4	21.9	16	16	8.5	5.2	B-PT1/8	11.6
SVR 45LCH SVS 45LCH	60	120	171	100	80	M12	10.5	137.8	22	20.5	20	48.4	21.9	16	16	8.5	5.2	B-PT1/8	11.6
SVR 55CH SVS 55CH	70	140	163.3	116	95	M14	12.5	123.6	24	22.5	22	56	23.6	17	16	10	5.2	B-PT1/8	14
SVR 55LCH	70	140	200.5	116	95	M14	12.5	160.8	24	22.5	22	56	23.6	17	16	10	5.2	B-PT1/8	14

		L	_M rail	dimer	sions		Basic loa	ad rating	Statio	permis	sible mo	ment [k	(N-m]*3	Ма	ss
Model No.	Width W₁		Height	Pitch	d₁×d₂×h	Length	С	C ₀	N	la 🔒	N	le 🔓	Мс 🕝	LM block	LM rail
	0 -0.05	W_2	M₁	F	U1XU2XII	Max*2	[kN]	[kN]	1 block	Double blocks	1 block	Double blocks	1 block	[kg]	[kg/m]
SVR 35CH	34	33	24.5	80	9×14×12	3000	90	115	1.19	7.19	0.812	6.17	1.65	1.7	6.0
SVS 35CH	34	33	24.5	80	9X 14X 12	3000	69	88	1.11	6.78	1.20	5.64	1.47	1.7	0.0
SVR 35LCH	34	33	24.5	80	0.14.12	3000	108	159	2.21	11.1	1.50	9.63	2.28	2.2	6.0
SVS 35LCH	34	33	24.5	80	9×14×12 30	3000	83	122	2.05	10.5	2.22	8.79	2.03	2.2	0.0
SVR 45CH	45	37.5	29	105	14×20×17	3000	132	173	2.61	13.0	1.80	11.8	3.51	3	9.5
SVS 45CH	45	37.5	29	105	14XZUX17	3090	101	133	2.45	12.3	2.67	10.3	3.15	٥	9.5
SVR 45LCH	45	37.5	29	105	14×20×17	3000	161	231	3.98	20.8	2.75	18.8	4.39	4.2	9.5
SVS 45LCH	45	37.5	29	105	14XZUX17	3090	123	177	3.74	19.6	4.08	16.5	3.94	4.2	9.5
SVR 55CH	53	43.5	36.5	120	16×23×20	3060	177	238	3.78	20.5	2.59	18.6	5.13	4.4	14
SVS 55CH	55	43.5	30.5	120	10223220	3000	136	182	3.55	19.2	3.85	16.3	4.56	7.4	17
SVR 55LCH	53	43.5	36.5	120	16×23×20	3060	214	312	6.35	30.8	4.35	28.0	6.73	6.5	14
	53	43.5	30.5	120	10x23x20	3000	164	239	5.95	28.8	6.49	24.5	5.99	0.5	14

Note

Double blocks: Static permissible moment value with 2 blocks closely contacting with each other

Example of model number coding

Model number 2Type of LM block 3No. of LM blocks used on the same rail 4With QZ Lubricator

Note This model number indicates that an LM block and an LM rail constitute one set (i.e., the required number of sets when 2 rails are used in parallel is 2).

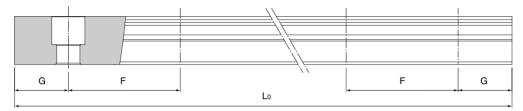
Those models equipped with QZ Lubricator cannot have a grease nipple.

^{*1} Pilot holes for side nipples are not drilled through in order to prevent foreign material from entering the product. THK will mount grease nipples per your request. Therefore, do not use the side nipple pilot holes for purposes other than mounting a grease nipple.

^{*2} The maximum length under "Length" indicates the standard maximum length of an LM rail.

^{*3} Static permissible moment: 1 block: Static permissible moment value with 1 LM block

⁵ Dust prevention accessory symbol (see page 25) 6 Radial clearance symbol (see page 7)

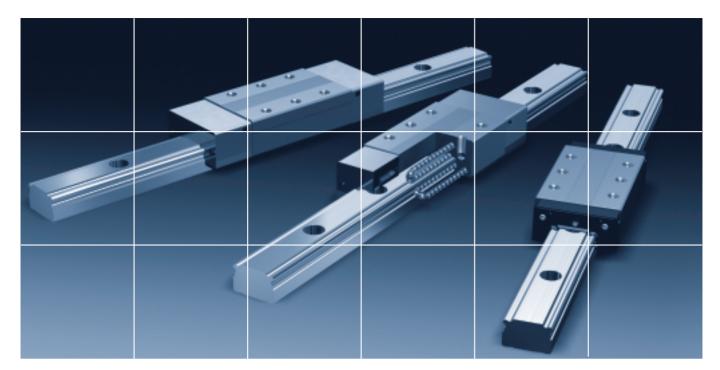

LM rail length (in mm) 3Accuracy symbol (see page 8) 9Symbol for LM rail jointed use 10No. of rails used on the same plane

Standard Length and Maximum Length of the LM Rail

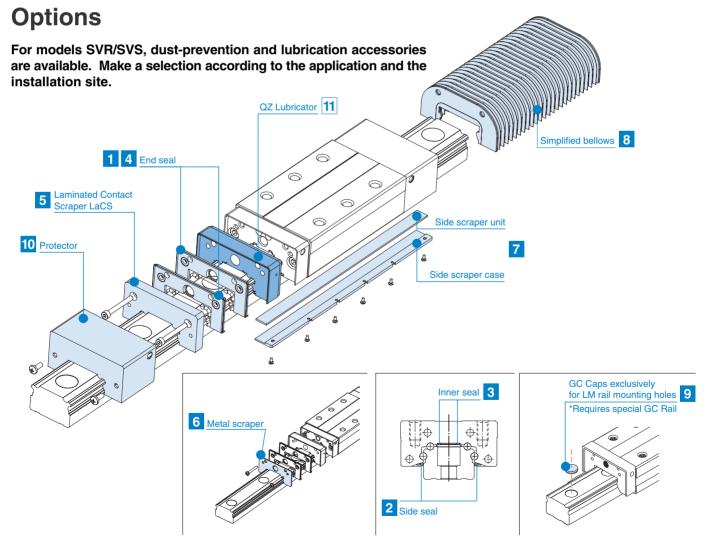
The table below shows the standard LM rail lengths and the maximum lengths of models SVR/SVS variations. If the maximum length of the desired LM rail exceeds them, connected rails will be used. Contact THK for details.

For the G dimension when a special length is required, we recommend selecting the corresponding G value from the table. The longer the G dimension is, the less stable the G area may become after installation, thus adversely affecting accuracy.

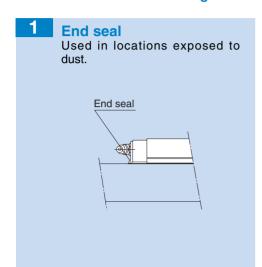
Standard Length and Maximum Length of the LM Rail for Models SVR/SVS


Unit: mm

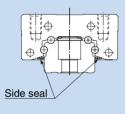
Model No.	SVR/SVS 25	SVR/SVS 30	SVR/SVS 35	SVR/SVS 45	SVR/SVS 55	SVR/SVS 65
Standard LM rail length (Lo)	230 270 350 390 470 510 590 630 710 750 830 950 990 1070 1110 1190 1230 1310 1350 1430 1470 1550 1590 1710 1830 1950 2070 2190 2310 2430 2470	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	280 360 440 520 600 680 760 840 920 1000 1080 1160 1240 1320 1400 1480 1560 1640 1720 1800 1880 1960 2040 2200 2360 2520 2680 2840 3000	570 675 780 885 990 1095 1200 1305 1410 1515 1620 1725 1830 1935 2040 2145 2250 2355 2460 2565 2670 2775 2880 2985 3090	780 900 1020 1140 1260 1380 1500 1620 1740 1860 1980 2100 2220 2340 2460 2580 2700 2820 2940 3060	1270 1570 2020 2620
Standard pitch F	40	80	80	105	120	150
G	15	20	20	22.5	30	35
Max length	2500	3000	3000	3090	3060	3000


Note 1: The maximum length varies with accuracy grades. Contact THK for details.

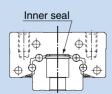
Note 2: If connected rails are not allowed and a greater length than the maximum values above is required, contact THK.



SVR/SVS OPTIONS


Dust Prevention Accessories

When foreign matter enters an LM system, it will cause abnormal wear or shorten the service life. It is necessary to prevent foreign matter from entering the system. Therefore, when possible entrance of foreign matter is predicted, it is important to select an effective sealing device or dust-prevention device that meets the working conditions.


2 Side seal

Used in locations where dust may enter the LM block from the side or bottom surface, such as vertical, horizontal and inverted mount.

3 Inner seal

Used in locations severely exposed to dust or cutting chips.

Seals and Scrapers

1 to 4 Seals

Highly wear-resistant end seals made of special resin rubber and side seals for increased dust-prevention effect are available.

If desiring a dust-prevention accessory, specify it with the corresponding symbol indicated in table 3.

For the supported LM Guide model numbers for dust-prevention accessories and the overall LM block length with a dust-prevention accessory attached (dimension L), see tables 4 and 5.

Seal resistance value

For the maximum seal resistance value per LM block when a lubricant is applied on seal SVR/SVS ··· SS, refer to the corresponding value provided in table 1.

Table 1 Maximum Seal Resistance Value of Seal SVR/SVS ··· SS

	Unit: N
Model No.	Maximum seal resistance
25	10
30	14
35	18
45	22
55	26
65	31

5 6 Scrapers

Laminated Contact Scraper LaCS®

For locations with an even more adverse working conditions, the Laminated Contact Scraper LaCS is available.

LaCS removes minute foreign matter adhering to the LM rail in multiple stages and prevents it from entering the LM block with a laminated contact structure (3-layer scraper).

Features

- Since the 3 layers of scrapers fully contact the LM rail, LaCS is highly capable of removing minute foreign matter.
- Since it uses oil-impregnated, foam synthetic rubber with a selflubricating function, low friction resistance is achieved.

Basic Specifications of LaCS

- ●Service temperature range of LaCS: -20°C to +80°C
- Resistance of LaCS (for Reference): indicated in table 2

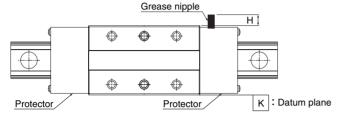
Table 2 Resistance of LaCS (for Reference) Unit: N

	01111111
Model No.	Resistance of LaCS
25	8.1
30	13.4
35	15.5
45	23.3
55	28.6
65	30.6

Note 1: Each resistance value in the table only consists of that of LaCS, and does not include sliding resistances of seals and other accessories.

Note 2: For the maximum service speed of LaCS, contact THK.

*Note that LaCS is not sold alone.


Table 3 Symbols of Dust Prevention Accessories for Models SVR/SVS

Symbol	Dust prevention accessory
UU	With end seal
SS	With end seal + side seal + inner seal
DD	With double seals + side seal + inner seal
ZZ	With end seal + side seal + inner seal + metal scraper
KK	With double seals + side seal + inner seal + metal scraper
JJHH	With end seal + side seal + inner seal + LaCS + protector (serving also as metal scraper)
TTHH	With double seals + side seal + inner seal + LaCS + protector (serving also as metal scraper)
JJHHYY	With end seal + side seal + inner seal + LaCS + protector (serving also as metal scraper) + side scraper
TTHHYY	With double seals + side seal + inner seal + LaCS + protector (serving also as metal scraper) + side scraper

4

When Dust Prevention Accessories JJHH, TTHH, JJHHYY or TTHHYY are Attached

When dust prevention accessories JJHH, TTHH, JJHHYY or TTHHYY are attached, the grease nipple can be mounted in the location indicated in the figure below. The table below shows incremental dimensions with the grease nipple.

Note: When desiring the mounting location for the grease nipple other than the one indicated in the figure above, contact THK.

Unit: mm

	Cinic min							
	Model No.	Incremental dimension with grease nipple H	Nipple type					
	25R/LR	5.5	PB1021B					
	30R/LR	5.5	PB1021B					
SVR/SVS	35R/LR, RH/LRH	9	A-M6F					
341/343	45R/LR, RH/LRH	9	A-M6F					
	55R/LR, RH/LRH	9	A-M6F					
	65R/LR	12	A-PT1/8					

For Models Attached with Contamination Protection Accessories UU or SS

For the mounting location of the grease nipple (N) and its incremental dimension (E) when contamination protection accessories UU or SS areattached, see the corresponding dimensional table (see page 11 to 22).

For Models Attached with Contamination Protection Accessories DD, ZZ or KK

For the mounting location of the grease nipple and its incremental dimension whencontamination protection accessories DD, ZZ or KK are attached, contact THK.

When Dust Prevention Accessory HH is Attached

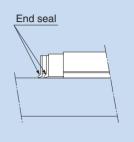
Types with accessory symbol HH (attached with LaCS) are attached with protectors.

Protector also serves as metal scraper.

For other types attached with a protector, contact THK.

Table 4 Overall LM Block Length (Dimension L) of Models SVR/SVS with a Dust Prevention Accessory Attached

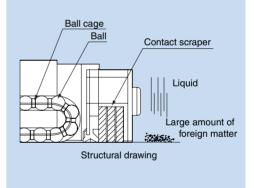
Model No.	UU	SS	DD	ZZ	KK	JJHH	TTHH	JJHHYY	TTHHYY
25R/C	82.8	82.8	88	88.5	93.7	102.5	107.7	102.5	107.7
25LR/LC	102	102	107.2	107.7	112.9	121.7	126.9	121.7	126.9
30R/C	98	98	104.6	103.7	110.3	120.9	127.5	120.9	127.5
30LR/LC	120.5	120.5	127.1	126.2	132.8	143.4	150.0	143.4	150.0
35R/C	109.5	109.5	116.5	116.3	123.3	133.5	140.5	133.5	140.5
35LR/LC	135	135	142	141.8	148.8	159.0	166.0	159.0	166.0
45R/C	138.2	138.2	145.2	145.8	152.8	165.8	172.8	165.8	172.8
45LR/LC	171	171	178	178.6	185.6	198.6	205.6	198.6	205.6
55R/C	163.3	163.3	168.4	169.0	176.0	191.1	198.1	191.1	198.1
55LR/LC	200.5	200.5	205.6	206.2	213.2	228.3	235.3	228.3	235.3
65R/C	186	186	191.8	193.1	200.5	217.5	224.9	217.5	224.9
65LR/LC	246	246	251.8	253.1	260.5	277.5	284.9	277.5	284.9


Table 5 Overall LM Block Length (Dimension L) of Models SVR/SVS-H with a Dust Prevention Accessory Attached

with a bust Frevention Accessory Attached								Unit: mm	
Model No.	UU	SS	DD	ZZ	KK	JJHH	TTHH	JJHHYY	TTHHYY
35RH/CH	109.5	109.5	116.5	116.3	123.3	133.5	140.5	133.5	140.5
35LRH/LCH	135	135	142	141.8	148.8	159.0	166.0	159.0	166.0
45RH/CH	138.2	138.2	145.2	145.8	152.8	165.8	172.8	165.8	172.8
45LRH/LCH	171	171	178	178.6	185.6	198.6	205.6	198.6	205.6
55RH/CH	163.3	163.3	168.4	169.0	176.0	191.1	198.1	191.1	198.1
55LRH/LCH	200.5	200.5	205.6	206.2	213.2	228.3	235.3	228.3	235.3

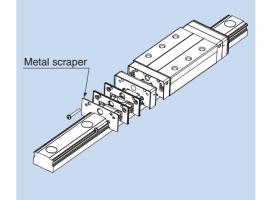
Double sealsUsed in locatio

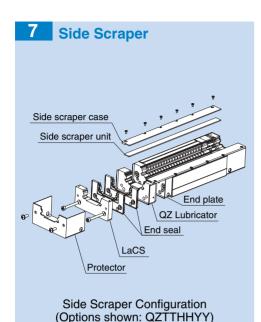
to

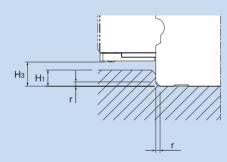

Used in locations exposed to much dust or many cutting chips.

LaCS

5

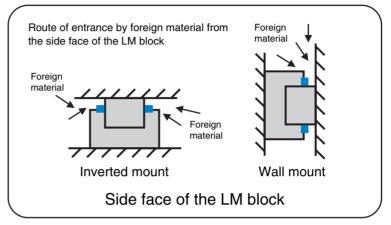

Used in harsh environments exposed to foreign matter such as fine dust and liquids.




Metal scraper

6

Used in locations where welding spatter may adhere to the LM rail.



Side view of the LM block after the side scraper is mounted

7 Side Scraper

- Minimizes foreign material entering from the side of the LM Guide in a harsh environment.
- Demonstrates a dust protection effect in inverted or wall mount.

Note: The side scraper is not sold separately. Side scraper option need to be specified at the time of order.

The shoulder height of the mounting surface and the corner radius after the side scraper is mounted

	-		
Model No.	Corner radius r (maximum)	Shoulder height of the LM rail section H ₁	Н₃
25	0.5	2	2.7
30	1	3.5	4.2
35	1	5.5	6.2
45	1	8	8.8
55	1.5	10.5	11.2
65	1.5	11	12.1

Maximum Resistance for the side scraper

Unit: N

Unit: mm

Model No.	Maximum Resistance for the side scraper (TTHHYY Option)
25	4.4
25L	5.2
30	4.7
30L	5.5
35	4.6
35L	5.5
45	5.1
45L	6.1
55	5.3
55L	6.3
65	5.4
65L	6.9

■ Model number coding

SVR45 LR 1 QZ JJHH YY C1 +1200L

With a side scraper*

^{*} Side scraper models SVR/SVS support various options of contamination-protection parts (P. 26) and lubrication-related parts (P. 30). Contact THK for details.

8 Simplified Bellows JSV

For Models SVR/SVS, simplified bellows JSV is available. Contact THK for details.

9 Metal Cap Dedicated for LM Rail Mounting Holes GC Cap

GC cap is a metallic cap that plugs the LM rail mounting hole (article compliant with the RoHS Directives). It prevents the entrance of foreign material and coolant from the LM rail top face (mounting hole) under harsh environments, and significantly increases the dust control performance of the LM Guide if used with a dust control seal.

Unit: mm

Model No.	Model No. for GC Cap	Outer diameter	Thickness H
SVR/SVS25	GC5	9.86	2.5
SVR/SVS30	GC6	11.36	2.5
SVR/SVS35	GC8	14.36	3.5
SVR/SVS45	GC12	20.36	4.6
SVR/SVS55	GC14	23.36	5.0
SVR/SVS65	GC16	26.36	5.0

If designating an LM Guide model attached with GC cap, observe the following example of model number coding.

Example of model number coding

SVR45 LR 2 QZ TTHH C0 + 1200L P - I GC

Model number Type of LM bloc

Type of LM block With QZ Lubricator attached

No. of LM Symbol for blocks used on the same rail protection accessory

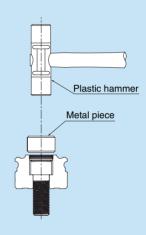
LM rail length (in mm)
Accuracy symbol

No. of LM rails used or the same plane^{Note7}

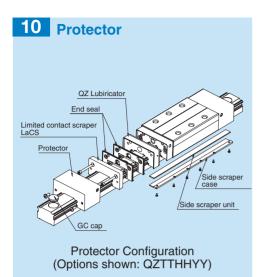
Radial clearance symbol With GC cap^{Note7}

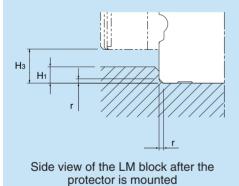
- Note 1: The LM rail of an LM Guide model attached with GC cap is of special type.
- Note 2: GC cap cannot be mounted on an LM rail made of stainless steel or provided with surface treatment.
- Note 3: If using the product in a special environment such as vacuum, low temperature or high temperature, contact THK.
- Note 4: GC cap is not sold alone. It is always provided in combination with LM Guide.
- Note 5: The mouth of the LM rail mounting hole is not chamfered. Take care not to hurt your hand when attaching GC cap.
- Note 6: After attaching GC cap, be sure to level and clean (wipe off) the tope face of the LM rail.
- Note 7: If you desire a one-rail LM Guide model attached with GC cap, apply the following example of model number coding.
- ex) SVR45LR2QZTTHHC0+1200LPGC With GC cap

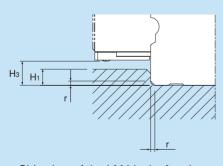
*Add the symbol "GC" at the end of the model number.

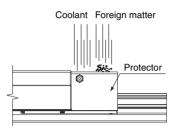

For the C-cap, see the general catalog. For inquiries on other material (aluminum), contact THK

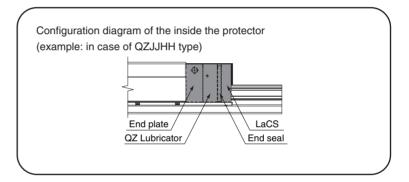
9 GC Cap




Mounting method


To insert GC cap into a mounting hole, use a flat metal piece like the one shown in the figure, and gradually drive the metal cap until its top is on the same level as the LM rail top face. When inserting GC cap, do not remove the LM block from the LM rail.





Side view of the LM block after the protector and side scraper are mounted

10 Protector

●The protector minimizes the entrance of foreign material even in harsh environments where foreign material such as fine particles and liquids are present.

The shoulder height of the mounting surface and the corner radius after the protector is mounted

radius after the protector is mounted Unit: mn						
Model No.	Corner radius r (maximum)	Shoulder height of the LM rail section H ₁	Н₃			
25	0.5	4	5.5			
30	1	5	7			
35	1	6	9			
45	1	8	11.6			
55	1.5	10	14			
65	1.5	10	15			

The shoulder height of the mounting surface and the corner radius after the protector and side scraper are mounted

		'	
Model No.	Corner radius r (maximum)	Shoulder height of the LM rail section H ₁	Н₃
25	0.5	2	2.7
30	1	3.5	4.2
35	1	5.5	6.2
45	1	8	8.8
55	1.5	10.5	11.2
65	1.5	11	12.1

Unit: mm

^{*}Contact THK if you want to use the Protector with other options.

Lubrication Accessories

11 QZ Lubricator_{TM}

The QZ Lubricator feeds the right amount of lubricant to the ball raceway on the LM rail. This allows an oil film to continuously be formed between the balls and the raceway, and drastically extends the lubrication and maintenance intervals.

When the QZ Lubricator is required, specify the desired type with the corresponding symbol indicated in table 6.

For supported LM Guide model numbers for the QZ Lubricator and the overall block length with the QZ Lubricator attached (L dimension), see tables 7 and 8.

Features

- Supplements lost oil to drastically extend the lubrication/maintenance interval.
- Eco-friendly lubrication system that does not contaminate the surrounding area since it feeds the right amount of lubricant to the ball raceway.
- The user can select a type of lubricant that meets the intended use.

Attaching the QZ Lubricator helps extend the maintenance interval throughout the whole load range from the light-load area to the heavy-load area.

Table 6 Parts Symbols for Models SVR/SVS with the QZ Lubricator Attached

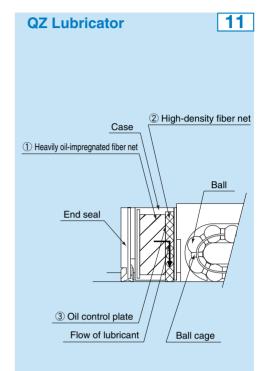

Symbol	Dust prevention accessories for LM Guide with QZ Lubricator attached
QZUU	With end seal + QZ Lubricator
QZSS	With end seal + side seal + inner seal + QZ Lubricator
QZDD	With double seals + side seal + inner seal + QZ Lubricator
QZZZ	With end seal + side seal + inner seal + metal scraper + QZ Lubricator
QZKK	With double seals + side seal + inner seal + metal scraper + QZ Lubricator
QZJJHH	With end seal + side seal + inner seal + LaCS + protector (serving also as metal scraper) + QZ Lubricator
QZTTHH	With double seals + side seal + inner seal + LaCS + protector (serving also as metal scraper) + QZ Lubricator
QZJJHHYY	With end seal + side seal + inner seal + LaCS + protector (serving also as metal scraper) + side scraper + QZ Lubricator
QZTTHHYY	With double seals + side seal + inner seal + LaCS + protector (serving also as metal scraper) + side scraperr + QZ Lubricator
	· • · · · · · · · · · · · · · · · · · ·

Table 7 Overall LM Block Length (Dimension L) of Models SVR/SVS with the QZ Lubricator Attached Unit: mm

	•	,	,						Unit: mm
Model No.	QZUU	QZSS	QZDD	QZZZ	QZKK	QZJJHH	QZTTHH	QZJJHHYY	QZTTHHYY
25R/C	102.8	102.8	108	108.5	113.7	122.5	127.7	122.5	127.7
25LR/LC	122	122	127.2	127.7	132.9	141.7	146.9	141.7	146.9
30R/C	118	118	124.6	123.7	130.3	140.9	147.5	140.9	147.5
30LR/LC	140.5	140.5	147.1	146.2	152.8	163.4	170.0	163.4	170.0
35R/C	139.5	139.5	146.5	146.3	153.3	163.5	170.5	163.5	170.5
35LR/LC	165	165	172	171.8	178.8	189.0	196.0	189.0	196.0
45R/C	168.2	168.2	175.2	175.8	182.8	195.8	202.8	195.8	202.8
45LR/LC	201	201	208	208.6	215.6	228.6	235.6	228.6	235.6
55R/C	201.4	201.4	208.4	209.0	216.0	231.1	238.1	231.1	238.1
55LR/LC	238.6	238.6	245.6	246.2	253.2	268.3	275.3	268.3	275.3
65R/C	224.4	224.4	231.8	233.1	240.5	257.5	264.9	257.5	264.9
65LR/LC	284.4	284.4	291.8	293.1	300.5	317.5	324.9	317.5	324.9

Table 8 Overall LM Block Length (Dimension L) of Models SVR/SVS-H with the QZ Lubricator Attached

Model No.	QZUU	QZSS	QZDD	QZZZ	QZKK	QZJJHH	QZTTHH	QZJJHHYY	QZTTHHYY
35RH/CH	139.5	139.5	146.5	146.3	153.3	163.5	170.5	163.5	170.5
35LRH/LCH	165	165	172	171.8	178.8	189.0	196.0	189.0	196.0
45RH/CH	168.2	168.2	175.2	175.8	182.8	195.8	202.8	195.8	202.8
45LRH/LCH	201	201	208	208.6	215.6	228.6	235.6	228.6	235.6
55RH/CH	201.4	201.4	208.4	209.0	216.0	231.1	238.1	231.1	238.1
55LRH/LCH	238.6	238.6	245.6	246.2	253.2	268.3	275.3	268.3	275.3

The structure of the QZ Lubricator consists of three major components:

- ① a heavy oil-impregnated fiber net (functions to store lubricant).
- ② a high-density fiber net (functions to apply lubricant to the raceway).
- ③ an oil-control plate (functions to adjust oil flow). The lubricant contained in the QZ Lubricator is fed by the capillary phenomenon, which is used also in felt pens and many other products, as the fundamental principle.

Significant Extension of the Maintenance Interval

^{*}Note that the QZ Lubricator is not sold alone.

^{*}Those models equipped with the QZ Lubricator cannot have a grease nipple.

When desiring both the QZ Lubricator and a grease nipple to be attached, contact THK.

ТГНК Caged Ball LM Guide Models SVR/SVS

Precautions on use

Handling

- This product consists mostly of heavy items (20 kg or more). When moving heavy items, use 2 or more people or moving equipment. This could cause injury or product damage.
- Do not disassemble the parts. This will cause dust to enter the product resulting in loss of functionality.
- Tilting an LM block or LM rail may cause them to fall by their own weight.
- Take care not to drop or strike the LM guide. This could cause injury or product damage. Giving an impact to it could also cause damage to its function even if the product looks intact.
- · Prevent foreign material, such as dust or cutting chips, from entering the system. This could cause damage to ball circulation components and loss of functionality.
- When planning to use the LM system in an environment where the coolant penetrates the LM block, it may cause trouble to product functions depending on the type of the coolant. Contact THK for details.
- Do not use the product at temperature of 80°C or higher. Contact THK if you desire to use the product at a temperature of 80°C or higher.
- If foreign material such as dust or cutting chips adheres to the product, replenish the lubricant after cleaning the product with pure white kerosene. For available types of detergent, contact THK.
- If an LM guide will be in an inverted orientation, take preventive measures such as adding a safety mechanism to prevent falls. If the end plate is damaged due to an accident, etc., balls may fall out of the guide or the LM block become detached from the LM rail and fall down.
- When using the product in locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, contact THK in advance.
- · When removing the LM block from the LM rail and then replacing the block, an LM block mounting/ removing jig that facilitates such installation is available. Contact THK for details.

- Thoroughly remove anti-rust oil and feed lubricant before using the product.
- Do not mix lubricants of different physical properties.
- In locations exposed to constant vibrations or in special environments such as clean rooms, vacuum and low/high temperature, normal lubricants may not be used. Contact THK for details.
- When planning to use a special lubricant, contact THK before using it.
- · When adopting oil lubrication, the lubricant may not be distributed throughout the LM system depending on the mounting orientation of the system. Contact THK for details.
- · Lubrication interval varies according to the conditions. Contact THK for details.

Storage

When storing the LM Guide, enclose it in a package designated by THK and store it in a horizontal orientation while avoiding high temperature, low temperature and high humidity.

• "LM GUIDE," and " <a>" are registered trademarks of THK CO., LTD.

- The photo may differ slightly in appearance from the actual product.
- The appearance and specifications of the product are subject to change without notice. Contact THK before placing an order.

OSTUTTGART OFFICE Phone:+49-7150-9199-0

HEADQUARTERS

- Although great care has been taken in the production of this catalog, THK will not take any responsibility for damage resulting from typographical errors or omissions.
- For the export of our products or technologies and for the sale for exports, THK in principle complies with the foreign exchange law and the Foreign Exchange and Foreign Trade Control Law as well as other relevant laws. All rights reserved For export of THK products as single items, contact THK in advance.

THK CO., LTD.

HEAD OFFICE 3-11-6, NISHI-GOTANDA, SHINAGAWA-KU, TOKYO 141-8503 JAPAN INTERNATIONAL SALES DEPARTMENT PHONE: +81-3-5434-0351 FAX: +81-3-5434-0353

Global site: http://www.thk.com/

Fax:+49-7150-9199

NORTH AMERICA	
THK America,Inc.	
HEADQUARTERS	
Phone:+1-847-310-1111	Fax:+1-847-310-1271
●CHICAGO OFFICE	
Phone:+1-847-310-1111	Fax:+1-847-310-1182
●NORTH EAST OFFICE	
Phone:+1-845-369-4035	Fax:+1-845-369-4909
●ATLANTA OFFICE	
Phone:+1-770-840-7990	Fax:+1-770-840-7897
 LOS ANGELES OFFICE 	
Phone:+1-949-955-3145	Fax:+1-949-955-3149
 SAN FRANCISCO OFFICE 	
Phone:+1-925-455-8948	Fax:+1-925-455-8965
DETROIT OFFICE	
Phone:+1-248-858-9330	Fax:+1-248-858-9455
●TORONTO OFFICE	
Phone:+1-905-820-7800	Fax:+1-905-820-7811
SOUTH AMERICA	
THK Brasil LTDA	
Phone:+55-11-3767-0100	Fax:+55-11-3767-0101
EUROPE	
THK GmbH	
●EUROPEAN HEADQUART	ERS
Phone:+49-2102-7425-555	Fax:+49-2102-7425-556
DUSSELDORF OFFICE	
Phone:+49-2102-7425-0	Fax:+49-2102-7425-299
●FRANKFURT OFFICE	

DHEADQUARTERS		• MUNICH OFFICE	
Phone:+1-847-310-1111	Fax:+1-847-310-1271	Phone:+49-8937-0616-0	Fax:+49-8937-0616-26
CHICAGO OFFICE		●U.K. OFFICE	
Phone:+1-847-310-1111	Fax:+1-847-310-1182	Phone:+44-1908-30-3050	Fax:+44-1908-30-3070
NORTH EAST OFFICE		●ITALY MILAN OFFICE	
Phone:+1-845-369-4035	Fax:+1-845-369-4909	Phone:+39-039-284-2079	Fax:+39-039-284-2527
ATLANTA OFFICE		●ITALY BOLOGNA OFFICE	
Phone:+1-770-840-7990	Fax:+1-770-840-7897	Phone:+39-051-641-2211	Fax:+39-051-641-2230
LOS ANGELES OFFICE		SWEDEN OFFICE	
Phone:+1-949-955-3145	Fax:+1-949-955-3149	Phone:+46-8-445-7630	Fax:+46-8-445-7639
SAN FRANCISCO OFFICE		●AUSTRIA OFFICE	
Phone:+1-925-455-8948	Fax:+1-925-455-8965	Phone:+43-7229-51400	Fax:+43-7229-51400-79
DETROIT OFFICE		SPAIN OFFICE	
Phone:+1-248-858-9330	Fax:+1-248-858-9455	Phone:+34-93-652-5740	Fax:+34-93-652-5746
TORONTO OFFICE		TURKEY OFFICE	
Phone:+1-905-820-7800	Fax:+1-905-820-7811	Phone:+90-216-362-4050	Fax:+90-216-569-7150
OUTH AMERICA		PRAGUE OFFICE	
HK Brasil LTDA		Phone:+420-2-41025-100	Fax:+420-2-41025-199
Phone:+55-11-3767-0100	Fax:+55-11-3767-0101	MOSCOW OFFICE	
UROPE		Phone:+7-495-649-80-47	Fax:+7-495-649-80-44
HK GmbH		THK Europe B.V.	
EUROPEAN HEADQUART	ERS	EINDHOVEN OFFICE	
Phone:+49-2102-7425-555	Fax:+49-2102-7425-556	Phone:+31-040-290-9500	Fax:+31-040-290-9599
DUSSELDORF OFFICE		THK France S.A.S.	
Phone:+49-2102-7425-0	Fax:+49-2102-7425-299	Phone:+33-4-3749-1400	Fax:+33-4-3749-1401
FRANKFURT OFFICE		CHINA	
Phone:+49-2102-7425-650	Fax:+49-2102-7425-699	THK (CHINA) CO.,LTD.	

Phone:+86-411-8733-7111 Fax:+86-411-8733-7000

	●SHANGHAI OFFICE	
9-888	Phone:+86-21-6219-3000 BEIJING OFFICE	Fax:+86-21-6219-9890
6-26	Phone:+86-10-8441-7277 ●CHENGDU OFFICE	Fax:+86-10-6590-3557
8070	Phone:+86-28-8526-8025 • GUANGZHOU OFFICE	Fax:+86-28-8525-6357
2527	Phone:+86-20-8523-8418 SHENZHEN OFFICE	Fax:+86-20-3801-0456
2230	Phone:+86-755-2642-9587 THK (SHANGHAI) CO.,LTD.	Fax:+86-755-2642-9604
39	Phone:+86-21-6275-5280	Fax:+86-21-6219-9890
	TAIWAN	
00-79	THK TAIWAN CO.,LTD.	
	●TAIPEI HEAD OFFICE	
746	Phone:+886-2-2888-3818 TAICHUNG OFFICE	Fax:+886-2-2888-3819
150	Phone:+886-4-2359-1505 TAINAN OFFICE	Fax:+886-4-2359-1506
-199	Phone:+886-6-289-7668	Fax:+886-6-289-7669
	KOREA	
)-44	SEOUL REPRESENTATIVE C	OFFICE
	Phone:+82-2-3468-4351	Fax:+82-2-3468-4353
	SINGAPORE	
9599	THK LM SYSTEM Pte. Ltd.	
	Phone: +65-6884-5500	Fax:+65-6884-5550

68-4353 THAIL AND

THK LM System Pte.Ltd.Representative Office in Thailand Phone:+660-2751-3001 Fax:+660-2751-3003

BANGALORE REPRESENTATIVE OFFICE Phone:+91-80-2330-1524 Fax:+91-80-2330-1524

